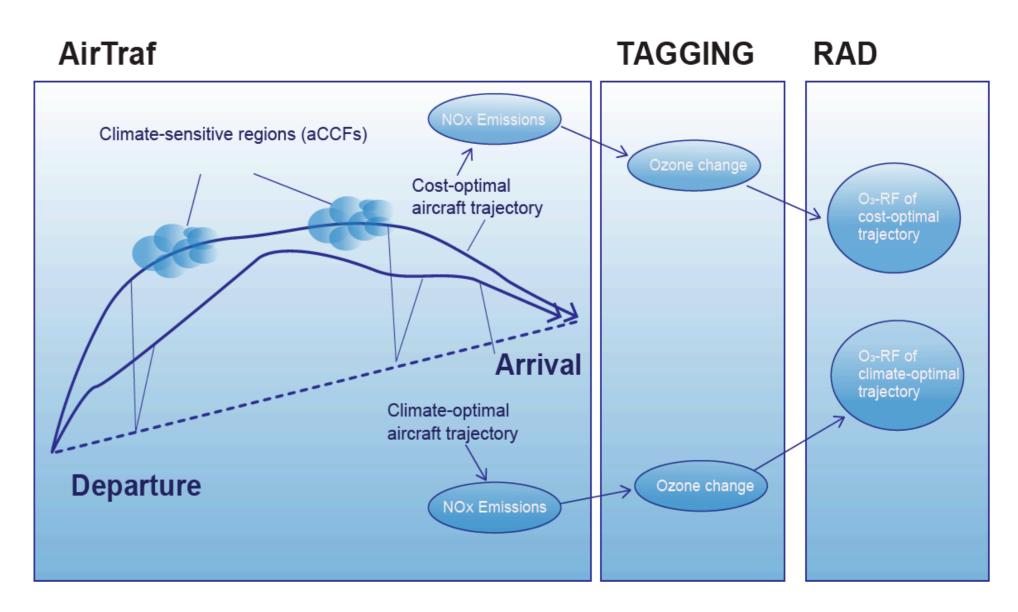
The analysis of NO_x-O₃ effects from optimised air traffic using algorithmic climate change functions (aCCFs)


Pratik Rao¹, Feijia Yin¹, Volker Grewe^{1,2}, Hiroshi Yamashita², Patrick Jöckel²

¹Delft University of Technology, Aircraft Noise and Climate Effects (ANCE) ²German Aerospace Center (DLR), Institute of Atmospheric Physics

Motivation

- Aviation induced warming includes CO₂ (<35%) and non-CO₂ effects (>65%) from NO_x, H₂O, contrails and direct aerosols [1].
- The climate impact of non-CO₂ emissions are characterised by the meteorology, emission location and time [2].
- Algorithmic Climate Change Functions (aCCFs) [3] are response models that use meteorological data to estimate the climate impact of emissions at a given location and time.
- We need to verify the effectiveness of aCCFs in generating green trajectories that avoid climate sensitive regions.
- The focus here is specifically on verifying O₃ aCCFs which are expected to predict NO_x impact on Ozone.

Simulation setup

Ozone aCCFs

• O₃ aCCFs are dependent on temperature and geopotential:

$$aCCF_{\mathbf{O_3}}(T, \mathbf{\Phi}) = \beta_0 + \beta_1 T + \beta_2 \mathbf{\Phi} + \beta_3 T \mathbf{\Phi}$$

• The verification process will provide insight on the capability of O_3 aCCFs in predicting NO_x effects on Ozone from optimised air traffic.

Weather situation (Τ, Φ)

Climate impact of NOx on O₃

Expected results

At the end of the project, the following is expected:

- The extent to which O_3 aCCFs are useful in predicting NO_x - O_3 impact from aviation re-routing procedures.
- Radiative forcing of Ozone from climate-optimised air traffic is lower than for cost-optimised traffic at the end of the simulation.

Air traffic optimised on:	Cost optimal	Climate optimal	Difference
Winter day	10.67	10.64	0.03
Summer day	8.85	8.73	0.12

Mean-adjusted O₃ RF (mW/m²) from optimised air traffic

Verification Approach

- Optimise EU air traffic on days characterised by high variability of NO_x-O₃ aCCFs.
- Both horizontal and vertical re-routing is considered.
- The flight traffic emissions are tracked and used in a 4-month chemistry simulation.
- A direct climate impact comparison is made with cost-optimised air traffic.

References

- 1. Lee et al., 2020. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018.
- 2. Grewe et al., 2014. Aircraft routing with minimal climate impact: the REACT4C climate cost function modelling approach (V1.0).
- 3. van Manen et al., 2019. Algorithmic climate change functions for the use in eco-efficient flight planning.

Acknowledgement: This project has received funding from European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement ID: 875503. Further gratitude is expressed to other collaborators from TU Delft (NL), DLR (DE), Deep Blue (IT), Royal NLR (NL), Amigo (IT), ITU (TR), IATA (ES) and SEA (IT).

